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SUMMARY

We consider two applications of optimum design theory to three examples. In design
augmentation, trials are added optimally to an existing non-optimal design. In model
checking we design for departures from an assumed model, but in a way that involves
few extra trials. For both problems we find D-optimum designs. Special cases of
the equivalence theorem for D-optimality provide algorithms for design construction
and insight into the structure of the designs. Simple examples of designs for second-
order response surface models over regular and irregular regions are followed by an
application of the optimum non-linedr design to field experiments on plant density.

KEY WORDS:  Bayesian design, D-optimality, irregular region, non-linear model,
response surface.
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1. Introduction

Many crops are grown in rows. The yield per plant, or per unit area, depends both
on the distance between the rows and on the distance between the plants in the
rows. In Section 6 we present a general nonlinear model for the dependence of plant
yield on these two distances which contains seven parameters. A simple alternative
model contains only three parameters. To estimate all parameters in the general
model requires experiments at at least seven combinations of inter- and intra-plant
distances. Data from such an experiment can be used to check whether the simple
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model holds by testing whether four of the parameters are equal to zero. If they
are, much of the experimental effort will have been devoted to model checking and
relatively little to estimates of the three remaining parameters. We use developments
of the methods of D-optimality to obtain parsimonious designs for checking the simple
yield-density model which require experiments at only four combinations of distances
and which are also efficient for estimating the parameters of the simple model.

If the design for model checking indicates that the simple model does not hold,
we show how to augment the design in an optimal manner to get estimates of the
parameters in the general model. Both design augmentation and model checking
can be formulated as problems in which some prior information is available. The
formulation for model checking is due to DuMouchel and Jones (1994). We extend
the equivalence theorem for D-optimality to these cases in which specific forms of
prior information are available. The extensions yield optimality conditions for which
there is a ready physical interpretation. We use the results in calculating the optimum
designs and in illustrating the change of structure of designs with the amount of prior
information. There are three examples, two for linear models and one for the nonlinear
yield-density model.

The theory is in Section 2, with the Equivalence Theorem conditions for D-
optimality in Section 2.2. The algorithm for finding optimum designs is discussed
in Section 2.3. The special cases for design augmentation, Section 3, and model
checking, Section 4, follow. We exemplify the theory with designs of both kinds for
second-order response surfaces over both regular and, in Section 5, irregular regression
regions. Plots of the variances of prediction illustrate the properties of the designs.
In Section 6 we apply the extension of the theory to nonlinear models and calculate
D-optimum designs for checking the model on the relationship of yield and density.
This model is a nonlinear form of a two-factor response surface model. Concluding
remarks are in Section 7.

2. Theoretical background

2.1. Notation and definitions

We start with a short description of optimum design theory which is applicable to
both linear and nonlinear models. Let the triple

{y,E(y), D(y)}

be the statistical model of the observations, where y € R™ is vector of n observa-
ble random variables, E(y) its expected value and D(y) its dispersion, or variance-
covariance, matrix. In this paper bold lower case will be used to denote vectors and
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bold upper case will denote matrices. The expected value of the jth observation is
given by
E(y;) =n(x;,0), ji=1,...,n,

where x; € X is an m-dimensional vector of experimental conditions, X C R™
and € € © denotes a p-dimensional vector of parameters, © C RP. The random
errors of observation, say e;, are assumed to be additive and normally, identically,
independently distributed with zero mean and constant variance o2, that is D(y) =
021, where I is an identity matrix. The model function 71 may be linear or nonlinear
with respect to both @ and x.

An experimental design, denoted by ¢, is a set of conditions x;, i = 1,...,¢,
together with the numbers of replications, r;, to be taken at each x;. Formally, we

write
_ X1y--3X¢
€ {wl,...,wt}’
where w; = r;/n is the proportion of the observations at x; and Zle r; = n. Such

designs are called discrete or exact. The x; are the points of support of ¢ and w; are
the weights. The information matrix of an exact design £ for the parameters 6 is

nM=n Z wif (%;)F7 (),

=1
where T
f(X) — 877(Xi7 0) an(xi: 9)
¢ 96, T 88, .
is the vector of partial derivatives of 7 with respect to the parameters 6;, 7 =1,...,p.

In developing the theory we consider continuous designs, which have the same
form, except that the w; may take any value from (0,1) such that Z$=1 w; = 1. The
information matrix of a continuous design is correspondingly

M(£) = /X £(0)E7 (x)£(da).

In practice, when only n observations can be taken, an exact design will be required.
Often the optimum continuous design is approximated by a design with the number
of trials at x; equal to the integer closest to nw;.

If the function 7 is linear with respect to the parameters then the partial derivatives
are functions of the experimental conditions only. For a nonlinear model, M also
depends on the parameters and some initial values of the parameters are necessary in
order to proceed with the design problem. In either case, the experimenter often has
some prior knowledge about the parameters, or has some observations, perhaps from
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previous experiments, which can be used to design further experiments in the most
efficient manner.

Let the prior information be in the form of an information matrix ngMg, where
ng is the number of trials in the prior experiment. The new information from the
experiment comes from an n-trial design ¢ and information matrix nM(¢). Combining
prior and experimental information yields the information matrix

M(£) = noMj + nM(¢),

which is the argument of the Bayesian D-optimality criterion. The criterion arises
from a utility function based on the expected Shannon information of the posterior
distribution of the parameter estimators, c.f. Chaloner and Verdinelli (1995). Maxi-
mizing the utility function reduces to maximizing the functional

B[N(e)] = /@ log det Mi(¢, 0)p(6)de,

where p(6) denotes the prior density function of 8. We consider only a point prior
6°, so the criterion simplifies to

B[M(€)] = det M(¢, 8°).

This form of the criterion is used, for example by Pukelsheim (1993), in Bayesian
optimum designs in linear models. For nonlinear models, the resulting designs are
only locally optimum.

The D-efficiency of a design £ relative to the optimum design is defined as

Degr = {IM(€)|/|M(£")|}/7, 0

where raising the ratio of determinants to the power 1/p measures efficiency in terms
of variance.

2.2. Equivalence Theorem condition

The Equivalence Theorem for D-optimum designs states that the designs are also
G-optimum, that is they minimise the maximum variance of the predicted response
over X. This variance of prediction at any point of X is less than or equal to the
number of parameters in the model and equality is obtained at the support points of
the optimum design. The theorem has been extended to wider classes of optimality
criteria including Bayesian designs. A thorough investigation of the theorem is given
by Pukelsheim (1993). Other references include Whittle (1973), Silvey (1980), Pilz
(1983), Chaloner (1984), Atkinson and Donev (1992), Fedorov and Hackl (1997).
The theory is based on the convexity of the optimality criteria and holds only for
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continuous designs. The condition on the variance of prediction given by the theorem
is helpful in the search for optimum designs, a point sometimes overlooked in the
literature, where the emphasis is rather on the use of the theorem to demonstrate the
optimality of a design.

In our algorithm we use the normalized information matrix for a continuous de-
sign &

Mq(§) = (1 — a)Mp + aM(¢), 2)
where
o= n and l—-a= no .
ng +n ng +n

Maximizing the functional ®(M,) for given « is equivalent to maximizing @(M) for
given ng and 7.

Now, we can formally state the design problem: find a design ¢ from a class of
feasible designs, =, maximizing a functional ® : M, — R, that is solve

max & {M,(¢,6°)}
ez

subject to
Mo (€, 6% € Ma = {(1 - )Mo +aM(£,0°), M(£,6%) e M(D)},

where M(Z) is the set of all information matrices for designs ¢ € Z.

By Theorem 11.6 and Lemma 6.16 of Pukelsheim (1993), we get the following
result

THEOREM 1. Assume that the prior information matrix My and a coefficient o €
(0,1) are given. Let the information matriz M* € M(E) be positive definite, that is,
the information matriz MY, = (1 — a)Mg + oM* is feasible for estimating 6. Then
M* is D-optimal for 8 in M(E) if and only if

7o) (M2) ™ () < o { M (vz) 3)
for all x € X. Equality obtains if for x we insert any support point X’ of any design
¢ that is D-optimal for 6 in M(E).

As a consequence of this Theorem, we get the following inequality
d(x,£%) < p, (4)

where p is the number of the model parameters (the dimension of the matrix M,,)
and

d(x,€") = af " (x) (M) TH(x) + (1 — a)tr {Mo(M3) ™'},

with the maxima again at the points of support of the optimum design.
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A proof of the Theorem and the derivation of inequality (4) are given in the
Appendix.

This result is very useful in searching for an optimum design when some prior
information is given. In the next section we give the appropriate form of d(x,¢)
for design augmentation. In Section 4 we derive the special form when interest is
in parsimonious model checking. But first we describe the use of the equivalence
theorem in finding and checking optimum designs.

2.8. Computational procedure

To find the optimum design we need to find the ¢ support points x;, together with
their associated weights w;. We also need to find the value of ¢, which is often, but
not always, equal to the number of parameters p. Since the weights sum to one, the
optimum design criterion ® is a function of 2t —1 variables. We can find the points at
which the criterion attains its maximum either by a numerical optimization over all
2t — 1 variables at once, or by a two-phase procedure in which optimum weights are
found for a given set of support points. In either case we use the equivalence theorem
to confirm that the design is optimum, checking both that d(x,£) = p at the support
points and also that the maximum value of d(x, ) over X is not greater than p.

In the two-phase algorithm we find the optimum weights for a given set of ¢ support
points, using information from the equivalence theorem to modify the support points
and, perhaps, change their number. The search in 2t — 1 dimensions is thus reduced
to a sequence of searches in ¢ — 1 dimensions. We use a grid of points in X both
to provide a set of candidate points for the design and for checking the maximum of
d(x,€). The optimum design weights are found for the set of support points forming a
candidate design. We remove from the design any support points with zero weight. If
the maximum of d(x,§) over the grid of X equals p the algorithm has converged and
we have an optimum design. Otherwise there will be one or more points for which
the value of d(x, &) is greater than p. We add the candidate point corresponding to
the maximum value of d(x,£). In this way a new candidate design is found which
may have a new value of t. The optimization of the weights is repeated and points
added or deleted until convergence is obtained, which usually occurs in two or three
iterations. Constraining the search to a grid of points both simplifies the search over
X and results in experiments which are easier to perform than those where the x
values can be any m-dimensional real vector within a given range.

For the numerical optimization we used the Fortran version of the conjugate gra-
dients algorithm frprmn of Press et al. (1992, p. 416). If rounding of the weights of
the continuous design does not give a satisfactory exact design, numerical methods
for the construction of exact designs such as DETMAX (Mitchell 1974) have to be
used (see Atkinson and Donev 1992, Chapter 15).
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3. Design augmentation

3.1. Equivalence theory

We first consider the augmentation of a design in which there are ng prior observations
with information matrix noMy. If the prior design is

w={u o a) ®

q
then

Zwof NET (x9). (6)

D-optimum designs for design augmentatmn are described by Dykstra (1971b), who
considers the sequential addition of one trial at a time. He later comments (Dykstra
1971a) that this method is equivalent to the sequential algorithm for the construction
of D-optimum designs of Wynn (1970). Such designs are optimum as n — oo but may
not be optimum for small n. An example is noted in Section 3.2. Evans (1979) finds
exact optimum designs for augmentation with specified n. Heiberger et al. (1993)
also calculate exact optimum augmentation designs, but for a large and flexible family
of criteria, which includes D-optimality. Since these papers describe exact designs,
they do not use Equivalence theory to explore the properties of the designs.

We obtain a useful re-expression of the condition for the Equivalence Theorem by
substituting My from (6) in (4)

d(x,€7) = of T (x) (M%) (%) + (1 - ) ZwOfT M) H(x) <p. (7)

This condition for the optimum design has an informative statistical interpretation;
it can be written as

q
d(x,€") = (n/0®) var {§(x)} + (no/0%) Y wf var {§(x9)} < p.
i=1

The first variance term is the posterior variance at a point in X and the second a
weighted sum of posterior variances at the points of the prior design. If the initial
design is D-optimum, the standardized posterior variances in (7) are all equal to p,
so that the optimum augmentation design is the D-optimum design in the absence of
prior information, that is a replicate of the prior design. Usually this will not be the
case. As we show, the augmentation design can be very different from the D-optimum
design found in the absence of prior information.
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3.2. Exzample 1. Second order response surface: regular design region

As a first example we consider designs for the second-order polynomial in two variables

(8

over the square design region X = {—-1<=z; <1,~1<zy <1}. The D-optimum
design for this model and region, when no prior information is available (o = 1), is
supported on the points of the 3% factorial with weights as given in the penultimate
column of Table 1. The good integer approximation to this design in the last column
of the table is one replicate of the full factorial with one extra replicate of each corner
point, making 13 trials in all.

E(y) = 01+ 6221 + 032 + 047132 + 0527 + 063

Table 1. Response surface — regular design region: augmentation of the second-order design
of Fig. 1 (no = 6). Continuous optimum designs and integer approximations [nw;] are given
for each value of o, apart from o = 13/19. The last two columns give the optimum design

for a second-order response surface and an integer approximation.

a=1/3 a=3/5 a=13/19 a=19/25 a=1

1 2 w [3w) w [9w] w w [19w] w [13w]
-1 -1 - - 0.0822 1 0.1074 0.1221 2 0.1458 2
0 -1 - - - - - 0.0005 0 0.0802 1
1 -1} 0.2897 1 0.2270 2 0.2092 0.1934 4 0.1458 2
1 -0.110.0565 0 - - - - - - -
-1 0 - - 0.0200 0 0.0463 0.0591 1 0.0802 1
0 0 - - - - 0.0038 0.0364 0 0.0962 1
1 0 - - 0.1142 1 0.1123 0.1036 2 0.0802 1
-1 1 | 0.2840 1 0.2226 2 0.2031 0.1866 4 0.1458 2
-0.1 1| 0.0670 0 - - - - - - -
0 1 - - 0.1089 1 0.1129 0.1102 2 0.0802 1
1 1103027 1 |0.220 2 0.2049 0.1881 4 0.1458 2

Our six-trial starting design is far from this design. The six points, shown by
circles in Fig. 1 are all in the lower left-hand quarter of the design region: no values
of z1 or of x4 are greater than zero.

It is clear that any scheme for design augmentation will extend the design over
the whole region. Since there are six points, the second-order model can be fitted.
The contours of the variance function of the prediction are also plotted in Fig. 1.
The maximum of 1,542 is at (1,1), the corner of the region most remote from the
initial design. The augmentation procedure of Dykstra (1971b), equivalent to the
sequential construction of the D-optimum design one trial at a time, would add a
trial at this point. The next point to be added would be at (1, -0.9), not a point
of the optimum second-order design. Such perpetuation of distortions introduced by
the initial design is one of the drawbacks of the sequential approach. We instead
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Figure 1. Regular design region: the six points of the second-order design which is to be
augmented, with contours of the standardized variance d(z, ).

find the optimum continuous design for a specified & and then calculate exact designs
from approximations to our optimum continuous measures. In our response surface
examples we search over grids of size 0.1 in z; and z.

Some augmentation designs are given in Table 1, together with integer approxi-
mations. For oo = 1/3 the optimum measure has five points of support. The contours
of the variance function in Fig. 2 show maximum values of 6 at these five points,
the corners most remote from the initial design, and at points near the centres of the
remote sides of the region. The continuous design is indeed optimum. The weights
on the three corners of the region at which there were no prior experiments account
for 88% of the total, and are nearly equal. Since a = n/(ng + n), when ng = 6
and o = 1/3 we require a design for n = 3. A good integer approximation to the
three-trial design is to put one trial at each of the three corners of the region. This
integer approximation is given in the fourth column of Table 1 with the number of
replicates r; = [3w;], the integer closest to 3w;. These three points are also plotted
in Fig. 2. Since the three-trial integer approximation is not the optimum continuous
design, the variance for the nine-trial design at the two points with small weights in
column 3 of the table is greater than 6. In calculating this variance the form (7) was
used, since we do have a prior design.

The other columns of the table give continuous designs for o = 3/5, 13/19, and
19/25 and exact designs with 7; = [nw;]. The continuous designs have respectively
seven, eight and nine points of support, all at the points of the 32 factorial. For
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Figure 2. Regular design region: augmentation of the second-order design. Contours of the
standardized variance d(z,£*) for the optimum design for n = 3 of Table 1.

a = 3/5 a good integer approximation has six unequally replicated points of support
whereas, for « = 19/25, the discrete design has seven support points. The results
for o = 13/19 are included to emphasise that good integer approximations cannot be
found for all . Algorithms for exact designs may sometimes be necessary.

Also included in Table 1 is the design for a = 1, the optimum design in the
absence of an initial experiment. The design weights in Table 1 for the points of the
32 factorial show a smooth progression from o = 1/3 to a = 1. The weights for the
three corner points included when a = 1/3 decrease steadily to the final values while
the other weights increase with a once their support points have been included in the
design.

4. Parsimonious model checking

4.1. Formulation of prior information

Suppose that the terms in the linear model (or a linear approximation of a non-linear
model) can be partitioned into two groups

E(y) = 9$fr (X) + ezfs (X), (9)

where 0, is a vector of r primary parameters and 6 is a vector of s secondary
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parameters. Accordingly, f.(x) and f;(x) denote vectors of functions of experimental
conditions. The terms in f,.(x) are those that it is believed are required in the model,
for example first-order terms in a polynomial model. However as well as designing
the experiment to estimate @, it is also required to check that none of the terms
of fs(x) are required. These will typically be higher-order polynomial terms. The
parsimonious design problem is to find a design which allows such checking without
requiring estimation of all r + s parameters.

DuMouchel and Jones (1994) suggest finding D-optimum designs for the model
(9) when there is no prior information about the primary parameters, but there is
some about the secondary ones. The effect of prior information on the secondary
parameters is to concentrate experimental effort on the primary ones. This procedure
is a special case of Bayesian D-optimality.

The absence of prior information about the primary parameters 8, is represented
by using a diffuse prior distribution. Let

07‘ ~ N’r(027721’r‘))

where v2 — oo. However, we assume that there is some prior information for the
secondary parameters, which have distribution

Gs ~ Ns(037 7-213),

2

where 72 is a small positive value. Then the prior distribution of all the p = r + s

parameters is
92 '72Ir 0756
o~ ([ o

For designing experiments we require the prior information matrix for 6, that is the
inverse of the dispersion matrix. So when y2 — co

1
2

0 0
K — rXTr rXs X
( OSX'Y‘ IS >
Hence the posterior information matrix (Lee, 1997 or Pukelsheim, 1993) for 0, given
£, is

(D) — K,

where

M = noK 4 nM,
where ng = 02/72. As we did for design augmentation, we calculate optimum designs
using the normalized form of the information matrix My, = (1 — o)K + oM. But
now « can be expressed in terms of n, 72 and o2. We assume that the variance of the
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observations, 02, is constant, so increasing values of 72, which mean less precise prior

information about the secondary parameters, leads to larger values of . As o — 1 the

design tends to the D-optimum design when the model with all 7 + s parameters is of

interest. Conversely, decreasing o implies more prior knowledge about the secondary

terms. As o — 0 the design tends to the D-optimum design for the model with just

r parameters. The equivalence theorem of §2.2 holds with p = r 4+ s and My = K.
We can again find a simple expression for the function d(x,£*) in (4). Let

(M7 = {(m&)}ijm,. s

when
48
rKME)™ = Y (my)
Jj=r+1
and
45
d(x,£") = of T(x) (M) T £(x) + (1 —a) > (i) <r+s, (10)
Jj=r+1

which is easily calculated.

This concludes our theoretical development of the relationship between the proce-
dure of DuMouchel and Jones (1994) and equivalence theory for Bayesian D-optimality.
However some comments on the prior specification are appropriate. The first is that
since information is available on only one group of terms, the secondary terms should
be orthogonal to the primary ones, in order to keep the information separate. This
orthogonality is achieved by regressing each secondary term on the primary terms.
The regression is over a list of candidate points in X. The residuals of the secondary
terms are then scaled and used in the construction of the design. The details are in
§6.2. Since the design uses only a few of the candidate points, it might be more logical
to perform weighted regression over the support points of the design, using the design
weights. The residuals then have to be updated for each design. Atkinson and Zocchi
(2000) find little difference between the designs obtained from such a procedure and
those from regressing over the candidate points, which is the procedure followed here.

DuMouchel and Jones also suggest two scalings. The first is that of the primary
terms. However Atkinson and Zocchi (2000) prove that the D-optimum designs are
invariant to this scaling. The second scaling is of the residuals of the secondary terms
after regression on the primary terms, so that they all have the same range, or the
same variance. If the scales of the residuals are very different, interpretation of 72
as a common variance is strained. In our response surface examples the range of the
variables is similar and we do not make this adjustment, calculating designs using the
unscaled residuals of the f(x).
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4.2. Ezample 1 continued. Second-order response surface: regular design region

The simplest problem in checking the model is to treat the three second-order terms
(the two quadratic terms and the interaction) as secondary. Designs for this problem
have a very simple structure. For small «, that is large prior information, the 22 fac-
torial is optimum - since the prior is overwhelming, there is no need for experimental
evidence to check the model. For larger «, the optimum design is the 22 factorial
with some weight on a centre point. For example, if & = 2/3 the optimum design has
weight 0.2343 on each factorial point and the remaining 0.0629 on the centre point.
The contours of the variance function for this design are plotted in Fig. 3. This has
a maximum of six at the five design points. But the plot also shows local maxima
at the centres of the sides of the region. These are the four remaining points of the
32 factorial, at which d(x, & *) = 5.843. As a increases slightly to 8/11 = 0.7273 this
design is no longer optimum, since the variances at the centres of the sides are now
6.025: these points should be included in the design. In calculating this variance, the
form (10) was used.

These designs have one expected feature — that the points of the 22 factorial plus
centre point can be optimum for checking the first order model against the second.
But it is surprising that such a small weight goes on the centre point. For o = 0.7188

i ——
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o~ O 8 5\6
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'8
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]
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g 58 58— 6—

: . . .

-10 -05 00 05 1.0
x1

Figure 3. Regular design region: design of Section 4.2 for checking the first-order model
for a = 2/3 together with contours of the standardized variance d(z, £*)
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the ratio of factorial weights to that for the centre point is 0.2276/0.0894 = 2.546. For
slightly higher values of o the five-point design is not optimal. This is very different
from the customary advice on this problem where the factorial might be augmented
by two or three centre points, giving a ratio of design weights of 0.5 or less. However
such advice may also incorporate the desire to obtain a rough estimate of the error
variance.

5. Example 2. Second-order response surface:
constrained design region

5.1. Background

Often, in chemical or biological experiments, high levels of all factors can lead to
conditions which are so severe that inorganic molecules decompose or plants wither.
Several examples are mentioned in Chapter 16 of Atkinson and Donev (1992). Avo-
idance of such conditions leads to a constrained design region. Since some of the
structure of the preceding designs depended on the symmetries of the design region,
we now consider a modified version of the problem in which constraints make the
design region less regular. With z; and z2 both scaled so that —1 <z; <1,i=1,2,
we add the linear constraints that

221+ 22 <1

Ty +z2 21

9 —xp < 1.5,

The resulting irregularly hexagonal design region X is shown in Fig. 4.

We are again concerned with designs for checking models and for the augmentation
of existing designs. To get a feel for the variety of designs which might be encountered
we calculate the D-optimum designs for the first- and second-order models when no
prior information is available. The resulting designs are given in Table 2 and Fig.
4. The first-order design has three points of support with weights 1/3. To check
the optimality of the design, the variance of the prediction was calculated over the
hexagonal region. Not only was the value 3 at the design points, it was also 3 at
(0,-1), but this point had a weight of zero and so was not included in the optimum
design.

The optimum design for the second-order model has eight points of support —
Table 2 and Fig. 4(b). In order to give some visual impression of the design weights,
the diameter of the dots in Fig. 4 (and also in Fig. 5) is proportional to w8. The
weight on (-0.5, 1) is a negligible 0.0061, and so is not visible in the figure. If this
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Figure 4. Constrained design region: optimum designs of Table 2: (a) First-order (o = 0)
and (b) Second-order (e = 1). Dot diameter o< w8

i .

-1.0
-1.0

Table 2. Response surface — constrained design region: optimum first-order and se-
cond-order designs.

First Second-Order Designs
1 Ta Order 8 points Exact: n =19

w w [19w]
0 -1 - 0.1595 3
1 -1 1/3 0.1626 3
0 -0.1 - 0.1010 2
-1 0 1/3 0.1648 3
0.5 0 - 0.1010 2
-0.7 0.8 - 0.1479 3
-0.5 1 - 0.0061 0
0 1 1/3 0.1571 3

D-efficiencies 100% 99.95%

point is dropped, the seven-point design for the six parameter model has weights in
the approximate ratio 3:2 and can be well approximated by the 19 trial integer design
of Table 2. The D-efficiency (1) of this exact design, relative to the eight-point design,
is 99.95%.
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5.2. Model checking

We now consider designs for checking first-order design which require fewer than seven
different sets of design conditions. When « is small, so that much of the information is
coming from the prior, the first-order design is augmented by extra trials at the point
(0, -1), which we have already noticed as having a high variance for the first-order
design. Designs with these four points of support are optimum up to oo = 0.318. The
weights are given in Table 3. For this value of «, the largest value of d(x,£¥) at a
point not in the design is 5.9923 at (—1,0.5). As « increases, this point is included in
the design which now has five points. These design points are optimum, with weights
changing with «, until o = 0.531 when the maximum, apart from points in the design,
d{(0.5,0),£*} = 5.9871. Unlike (-1, 0.5), (0.5, 0) is one of the points of support of
the optimum second-order design. Four model-checking designs are shown in Table
3 and in Fig. 5. Each one arises from a value of o at which another support point
almost needs to be added to the design measure. For each design the point about to
be entered is given in the table, along with the value of d(x, £*), which is just less than
six. The ability to determine which points will be included in the design if o increases
modestly is a further useful application of the equivalence theorem. There is also a
steady change in the design weights as « increases. Those for the three points of the
first-order design decrease from their initial values of 1/3, whereas that for (-1, 0.5)
increases and then decreases. In the limit for large o this point will not be present in
the design.

It is interesting to continue the process of finding optimum designs for model chec-
king for larger values of . However, the design that is of most practical importance

Table 3. Response surface — constrained design region: parsimonious designs for checking
first-order model, showing the number of support points of the design increasing with a.
Designs are given for values of o such that further increase will augment the design by

Xnext-

a=0.318 a=0.531 a = 0.647 a = 0.949
1 2
w [10w] w w w
0 -1 0.1105 1 0.1691 0.1849 0.1893
1 -1 0.2871 3 0.2625 0.2344 0.1932
-1 0 0.2871 3 0.1893 0.1522 0.1403
0.5 0 - - - 0.0659 0.1660
-1 0.5 - - 0.0919 0.1223 0.0786
-0.5 1 - - - - 0.0989
0 1 0.3153 3 0.2871 0.2468 0.1337
Next to enter (-1, 0.5) (0.5, 0) (-0.5, 1) (0,-0.1)
d(Xpext,E”) 5.992 5.987 5.970 5.991
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Figure 5. Constrained design region. Designs for model checking of Table 3: (a) o = 0.318,
(b) a = 0.531, (c) @ = 0.647 and (d) a = 0.949. Dot diameter o w8,
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is the four-point design. An intriguing feature of this design is that all four points are
on the edge of the design region, a design which is unlikely to be found by unaided
intuition. The designs we have found for large o are optimum for the model-checking
criterion, but are no more parsimonious than the seven-point design for the second-
order model. Continuing the process of design construction will of course finally lead
to the optimum design for the second-order model.

5.8. Design augmentation

We now use the theory of Section 3 for design augmentation starting from a design
for model checking, a design strategy which would be necessary if the simple model
were found not to hold. A good approximation to the design for model checking with
four support points is given in Tables 3 and 4. This ten-point design has three trials
at each of the points of the first-order design of Table 2 and one at the fourth point.
Suppose that, as a result of this experiment, it seems that a second-order model is
needed and so the design is to be augmented. Suppose also that a further five trials
are required. If we take as the support points those of the seven-point optimum design
of Table 2, we find that trials are required at only four support points, those that
are not part of the first-order design. The resulting design is in Table 4 and Fig. 6.
That this design is indeed optimum is checked by calculating d(x, &™), which is 6 at
the design points and less elsewhere. The five trials can be approximated by weights
of 1,1,1 and 2 as shown in the table, a design with a D-efficiency of 97.224% relative
to the eight-point design for the second-order model of Table 2.

If, instead, nine trials are to be added, the weights are as shown in Table 4. Now the
weights on the three points of the first-order design are close to zero, with a maximum

Table 4. Response surface — constrained design region: augmentation of parsimonious
design for checking first-order model.

Check a = 0.333 a=0.474

1 2 1st order w [5w) Total w [9w] Total
0 -1 1 0.1757 1 2 0.2255 2 3
1 -1 3 - - 3 0.0098 0 3
0 -0.1 - 0.2309 1 1 0.2121 2 2
-1 0 3 - - 3 0.0146 0 3
0.5 0 - 0.2335 1 1 0.2142 2 2
-0.7 0.8 - 0.3599 2 2 0.3227 3 3
—0.5 1 - - - - - - -
0 1 3 - - 3 0.0011 0 3

D-efficiencies I 97.224% | 99.95%
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Figure 6. Exact augmentation design of Table 4 for n = 5: o original points, ® augmentation.

of 1.46%. An integer approximation to the augmentation design has either two or
three trials at each of the other points of support. The combination of this design
with the initial design gives the approximation to the second-order design of Table 2.
A final example of the usefulness of the equivalence theorem is that the continuous
design found in the table is not quite D-optimum: d{(—0.5,1),£*} = 6.0292, a further
reminder that the optimum design of Table 2 has eight, not seven, points of support.

6. Example 3. A nonlinear model for crop yield and plant density

6.1. Background

Models quantifying the relationship between crop yield and plant density are of great
importance in agriculture. The review of Wiley and Heath (1969) lists the principal
models. Mead (1970) examines the theoretical properties of a family of inverse power
response curves and illustrates methods for fitting these models using two examples.
A comparison of the models in Wiley and Heath (1969) is given by Mead (1979).
Gillis and Ratkovsky (1978) and Ratkovsky (1989) investigate yield-density models
using simulation techniques. Seber and Wild (1989, Section 7.6) present a compact
review of the subject.

Plants compete for resources. The yield per plant therefore tends to decrease as
plant density increases although the yield per unit area often continues to increase
until appreciably higher plant densities are reached. The yield then either reaches an
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asymptote or slowly decreases. Because of this behaviour nonlinear models are often
used.

As an example we use data on the yields of soya beans grown in regularly spaced
rows — there is a regular distance both between the rows and between plants within
the rows. Although the simplest models assume that it is only the area per plant
that matters, rather than the shape of the area for each plant, we want a general
model which allows for different effects of the two distances, which are of different
magnitudes. The equivalent of the general second-order polynomial response surface
model of the earlier sections is the general seven-parameter model

1
1 1 1 1 1\ %
Ely)=(01+0—+03— +043—— + 05— + 05—
(v) ( 1+ 2 + 5% + D + 52 + ﬁm%) (11)
where:
E(y) is the expected yield per plant or biologically definable part of the plant;
01, ...,07 are positive parameters and 0 < 7 < 1;

x is the intra-row spacing, i.e. the spacing between plants within a row and

x9 is the inter-row spacing, i.e. the spacing between rows.

The area per plant is therefore z1zo with 1/x1z9 the density, i.e. the number of
plants per unit area.

This general model is a second-order polynomial with terms in 1/z; and 1/z5.
Although the parameters enter linearly, the model is made nonlinear by the presence
of the power 07. Instead of (11) we work with the related model for expected yield
per unit area

1
T1T2

1
1 1 1 1 1)\ %7
Ey)=—1{0,+60,— +063—+08 05— + 66— 2
(v") $1$2(1+ 2$1+ 3$2+ 4 + 53:%4‘ 61:%) ) (12)
obtained by dividing both sides of (11) by zzs.
Several simpler models have been proposed, which are special cases of (12). The

three parameter model of Shinozaki and Kira (1956) for expected yield per unit area

1 1\
(91 + 04 ) (13)
T1X2 1T

is obtained by putting 8, = 03 = 85 = 6 = 0 and so depends only on the area per
plant, ignoring the shape of that area. A four-parameter model due to Berry (1967)
allows for the shape of the area

E(y") =

1 1 1 1\ %
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and can be obtained from (12) by putting 85 = 8¢ = 0. A further model due to
Berry is the special case of (14) with 85 = 03 = 0, in which z; and x5 are treated
symmetrically.

To estimate the parameters in the general model (12) requires experiments at at
least seven combinations of 1 and z9. As we implied in the introduction, such a design
will usually be inefficient if the experimental purpose is to check the three-parameter
model (13). We now find an optimum model-checking design which requires trials at
only four treatment combinations, rather than seven.

6.2. Parsimonious Model Checking

Since the models we are using are nonlinear, we now need prior estimates of the
parameters to be able to design the experiment. For this purpose we use data from
Lin and Morse (1975) on the effect of spacing on the yield of soya beans. The data are
in Table 5. The four levels of the inter row-spacing factor (0.18, 0.36, 0.54 and 0.72
m) and four levels of the intra-row spacing factor (0.03, 0.06, 0.09 and 0.12 m) were
used to study the optimum spacing for maximum yield per unit area. The maximum
observed yield is near the centre of the region.

Table 5. Yield-Density relationship: the mean grain yield, in g/m?, for sixteen spacing
treatments of the soya bean variety Altona (from Lin and Morse, 1975).

Intra-row spacing (m)

Inter-row spacing (m)

0.03 0.06 0.09 0.12
0.18 260.0 344.7 279.9 309.2
0.36 305.3 358.3 312.2 267.8
0.54 283.9 342.0 269.0 253.9
0.72 221.8 287.9 230.9 196.9

When we tried to fit the simple model (13) to these data, we found that the fit
was improved, as judged by residual plots, if we took logarithms of both sides, so that
the primary model for expected yield becomes

1
no(x,0) = E(logy™) = —Elog <91 + 6,4 ) — log(z1z2).

T1Z2

Since yield cannot be negative, a model such as this, which gives a lognormal distri-
bution for y*, is more plausible than one with a normal distribution of errors on the
untransformed scale. The gamma models suggested by McCullagh and Nelder (1989,
p. 291) have a similar justification. An interesting feature of the logged model is
that the models for yield per plant and yield per unit area only differ by the subtrac-
tion of an offset. The parameter estimates for the logged model were §; = 0.07469,
84 = 0.003751 and 6 = 0.7363.
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The extended seven-parameter logged 7(x, @) model is likewise found by taking the
logarithm of (12). The two groups of parameters in Section 4.1 are thus the primary
parameters

03=[ 6 64 677

¥

with prior values
Og = [ él é4 é'r

and the secondary parameters

i

]T

01=[0, 05 65 065)",

with priors 89 taken as their expected value zero.
The elements of f3(x) and fy(x) are the derivatives of n(x,8) with respect to
6,7 =1,...,7, evaluated at the prior

0 =] (09" ()" ],

filx) = _{97 <91+94x11x2>}_1
560 = %A®) j=2...6 (15)

-2 o ~ 1
fr(x) = 6, log (91 + 04 ) .
12

In (15) 2; is the coefficient of 6, in (12).

The vectors of the derivatives defined in (15) form the rows of the design matrices
F.(¢) and F,(£) of primary and secondary terms. For design region we let X =
{(z1,22) : 0.156 < z; < 0.8 and 0.03 < z2 < 0.2}, slightly larger than that used by
Lin and Morse (1975). The prior of Section 4 for model checking makes sense if the
secondary terms are orthogonal to the primary ones and if the columns of F(¢) are
so scaled that the coefficients 6, have a common prior variance 72. In the response
surface examples of Sections 4 and 5 these conditions were satisfied by the scaling of
the variables from —1 to 1. We satisfy these conditions for our nonlinear model by
using scaled residuals from regression to provide the necessary orthogonality. For the
regression we use a design measure £_ which is uniform over the 14 x 14 set of points:

namely

{0.15,0.2,...,0.8} x {0.03,0.04307,0.05615, ..., 0.2},

the results not being sensitive to the number of points in X which are used. The steps
of the scaling procedure are:
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1. Perform the regression of the extra terms on the primary terms computing B =
{FT()F (&)} HFT(¢,)F,(€.)} and the residual matrix R = F,(¢,)—F.(¢,)B;

2. Calculate the range of each column of R, i.e., compute range(r;) = max(r;)
—min(r;) (f =1,...,s) where r; is the j-th column of R;

3. Compute W, =diag{range™(r;), ... ,range~(r,)};

4. Then the scaled residuals used in constructing the information matrix of the design
measure £ are

F3(6) = {Fa(§) - F(§)B}W,,

In Tables 6 and 7 and Fig. 7 we give designs for three different values of «.
These were found by numerical maximisation of the design criterion, the equivalence
theorem being used to check the optimality of our designs. The first, for « in (2) equal
to zero, is the family of D-optimum designs for estimating the primary parameters.
Since the primary model depends on z; and z» only through the product z;z,, the
optimum design specifies three values of z; 5, without, for one design point, specifying
individual values for z; or z5. Specifically,

122 = 0.0045 for (z,z;) = (0.15,0.03),
T129 = 0.16 for (z1,22) = (0.8,0.2),
and w122 = 0.02205 for any (z,z2) giving this value.

The optimum design is therefore not unique. It puts equal weights (1/3) at low, high
and intermediate values of zyz9. The graphical representation of the design thus
consists of two points at edges corners of the design region and a line of possible third
values, all of which give the same value of the optimality criterion, regardless of the
shape of the experimental plot. The specific value for the experiment, if the model
were known to be true, could be chosen with respect to an auxiliary criterion.

Table 6. Yield-Density relationship: design for a = 1 D-optimum design for the se-
ven-parameter model.

z3 T3 w [Tw]
0.15 0.03 0.143 1
0.15 0.0895 0.041 0
0.15 0.2 0.134 1
0.266 0.0633 0.115 1
0.284 0.2 0.138 1
0.421 0.03 0.003 0
0.8 0.03 0.142 1
0.8 0.0613 0.142 1
0.8 0.2 0.142 1

Efficiency 97.0%
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Table 7. Yield-Density relationship: design for & = 0.25, a parsimonious D-optimum design
for model checking.

Area/plant z1 z2 w [6w]
0.0045 0.15 0.03 0.324 2
0.0237 0.15 0.158 0.176 1
0.0240 0.8 0.03 0.176 1
0.1600 0.8 0.2 0.324 2

Efficiency 99.8%

For o equal to one we obtain the D-optimum design for the full model with all
seven terms. This design, like the design for the second-order response surface on a
rectangular design region, has nine support points. But now, because the model is
nonlinear and the range of the two factors is not the same, the design has, as the
second panel of Fig. 7 shows, an approximate symmetry about one-diagonal of the
design region. It also has very uneven weights on the support points which are plotted
with the dots having diameter proportional to w{8. As a result two design points are
hard to see. In Table 6 we give a seven point approximation to the design, which has
an efficiency of 97.0%.

Finally we use the method of this paper for model checking to obtain a design with
only four support points. We tried several values of o but here give only the results
for oo = 0.25. This design again is not symmetrical, nor does it have equal weight on
the four points. However a good approximation can be found. The resulting design,
plotted in the third panel of Fig. 7, is close to the D-optimum design for o = 0 in
the first panel: its two middle points give areas close to the former 0.02205 and the
other points are at the same corners of the design region as before. This parsimonious
design is therefore highly efficient both for checking the model and for estimating the
parameters in the model if it holds.

A design with four support points cannot pick up all departures from the three
parameter model which are possible when the general model has seven parameters.
The situation is similar to that of using trials at the centre of a two-level factorial to
check that quadratic terms are not needed. If the coefficients of the quadratic terms
are not zero, but sum to zero, the quadratic terms will not be detected. Protection
against such an unlikely happening for the nonlinear model could be obtained by
using larger values of « to generate designs with more support points. Such designs
would reflect the increased emphasis on model checking implied by larger c.
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Figure 7. Yield-density relationship. Designs for model checking: (a) @ = 0: D-optimum
design for primary terms. This design depends only on the value of z,zo and the third
design point can be anywhere on the dotted line; (b) @ = 1: D-optimum design for the
seven-parameter model with dot diameter oc wl-®. Since the design weights are far from
equal, all nine design points may not be evident; (c) & = 0.25: optimum design for checking
the three parameter model. The design points are close to those in panel (a) so that the
exact design of Table 7 is also highly efficient for estimation in the three-parameter model.
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7. Discussion

Both continuous and exact designs can be found by direct numerical maximization of
the design criterion, the procedure we followed for the yield-density model. This is the
method used by the authors cited here both for design augmentation and for model
checking. All authors were concerned solely with linear models. We have enriched
this procedure by using the equivalence theorem to construct designs, to check the
optimality of proposed designs and to understand changes in the structure of the
designs as the proportion of prior information changes.

8. Appendix

In Theorem 11.6 of Pukelsheim (1993) the maximization is over a set M which is a
subset of non-negative definite matrices and contains at least one feasible matrix for 6.
Theorem 1 of Section 2.2 restricts the consideration to a set M(Z) of all information
matrices for designs ¢ € Z. We therefore need to show that maximization over M(Z)
also yields the maximum over M. The proof of the theorem is straightforward. The
result comes from Theorem 11.6 and Lemma 6.16 of Pukelsheim (1993).

Proof. By Lemma 6.16 we get a unique matrix N = {(M;)_l} /p which simplifies
the two conditions of Theorem 11.6, i.e., the polarity equation

. trM,N "
P (Ma) 'L’I’LfMW—-)- =tr (MQN) =1

and the normality inequality
tr(AN) <tr(M*N) forall AeM
to the following
*y—1 * *y—1
tr {A(Ma) } < tr {M (M) } for all A € M. (A1)

The set M(E) contains matrices of the form A = f(x)f7(x), so (Al) implies the
inequality (3).
Conversely, any matrix A € M(Z) has a representation

A= Z wif (x;)f7 (x;),

=1
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and we get
r{AM) T} = T tr {wif ()T () (M2) T
= Sl (x) (M) 7 £(z),
which by (3)is < Yo', witr {M (M:;)‘l}
= tr {M* (M;)_l}
as Z::l w; = 1. 4

Now, to show equality in (3) let & € =, with support points x}, ¢ = 1,...,t, be
any Bayesian D-optimum design for 6, so that its information matrix satisfies the
condition tr(M/ N) = 1. Let us assume that for some xj we have strong inequality

7 (x))NE(x;) < tr(M*N). (A2)
Then
1 = tr(M,N)

= tr[{(1-a)Mg+ aM'}N]

= (1-a)ir(MyN) + atr(M'N)

= (1-)ir(MoN) +a Yt wif T (x))NF(z))

< (1-a)tr(MgN) + atr(M*N)

= tr(MiN) =1,
which is a contradiction. |

Condition (3) leads directly to inequality (4). Let us write

tr{Mz (M)}
o (10— @My + 0} ()]
(1— a)tr {Mo (M;)_l} + atr {M (M;)—l} .

p

]

Hence
1

tr {M (M;)"l} n ;atr {Mo (M;)—l} - g

and by (3) we get the following inequality

1-—

£7 () (M) 7 £60) + —

i {MQ (M;;)—l} < g

which gives (4).
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Warunek réwnowazosci zastosowany do optymalnego powigkszania
ukiadu eksperymentalnego i do efektywnego sprawdzania modelu:
powierzchnie wielomianowe i model plonu

STRESZCZENIE

Rozwazamy zastosowanie dwéch probleméw teorii ukladéw eksperymentalnych. W ce-
lu powigkszenia planu eksperymentu dodajemy punkty planu w sposéb optymalny pod
wzgledem estymacji parametréw modelu. Dla sprawdzenia modelu znajdujemy opty-
malny plan o niewielkiej liczbie punktéw. W obu przypadkach znajdujemy uklady
D-optymalne. Szczegélne przypadki warunku réwnowaznoéci dla D-optymalnoéci
ukladu stanowig podstawe algorytmu konstrukcji ukladéw jak réwniez daja wglad
w ich strukture. Przyklady planéw dla powierzchni wielomianowych drugiego rzedu
nad obszarem regularnym i nieregularnym poprzedzajg przyklad zastosowania uktadu
optymalnego do nieliniowego modelu plonu w doswiadczeniu polowym.

SLowA KLUCZOWE: Uklad Bayesowski, D-optymalnos¢, obszar nieregularny, model
nieliniowy, powierzchnia wielomianowa.



